Data challenges, opportunities, and learnings for policy-making
Argentina & Colombia

Camilo Urbano
Despacio
Subjects

1. Challenges & opportunities
2. Strategies, actions & methodology
3. Key results
4. Learnings to improve decision and policy-making
1. Challenges

1. Urban freight transport and its GHG data were not relevant and were not a priority.

2. Data is mainly in the private sector: all companies have little incentives in sharing their data.

3. Complexity and quality of the data: information was dispersed in the different levels of the companies and business.

4. Mistrust in sharing the data: information would be sold to competitors, burglar gangs or set harder regulations.

5. COVID-19 worsened companies’ moods and shift their focus from addressing their priorities to attend the emergencies from the pandemic and the quarantine setbacks.
1. Opportunities

1. Close the gaps of information on urban freight and GHG emissions.

2. Create incentives and awareness to share and open the data: pilots.

3. First steps to set a methodology and standards of urban freight data and GHG emissions in LATAM.

4. Building trust with data: involve companies in EcoLogistics’ LCAP and working groups,

5. COVID-19 speeds up transformation process of obtaining better data and awareness of utility: policies and GHG emissions reductions.
2. Strategies, actions & methodology

Strategies & actions:

01 Identification of potential companies and relevant businesses and industries.

02 Mapping allies and a list of companies: national logistics operators and local carriers.

03 Contact and work with working groups of the cities and guilds.

04 Development of a webinar on subjects of their interest in each city as an incentive to respond to the surveys.

05 Inviting companies to share their data by building the LCAP and increasing their visibility.

06 LCAP becomes an opportunity to reshape policies and defining pilot projects that interest the companies.
2. Strategies, actions & methodology

Methodology

I. Mapping companies by their locations and freight trips (generation/attraction)

Area selected: CBD
It includes the administrative and financial center, shops, tourist services and middle and upper-middle class inhabitants, although on the banks of the Salado River (to the east) and in the southern vertex, there are low-income neighborhoods.

II. Developing four survey methods

1. Phone calls
2. By e-mail
3. Personal interviews
4. Online survey

Data collection campaign in Colombia and Argentina was developed in 10 weeks (Feb-Apr/20).
Santa Fe, Argentina was developed in 9 weeks (Oct-Nov/19)

III. Reviewing the data and GHG emission calculation

• Review of the data obtained and data cleaning
• Estimations of the GHG baseline using the EcoLogistics tool
3. Key results

Share of baseline CO2e emissions by fuel type from the surveyed vehicle fleets.

- Data from the surveys show a large share of the emissions comes from diesel-fuelled vehicles (over 80%).
- Vehicles running on gasoline also produce a relatively big share of the emissions: AMVA (13.1%) and Manizales (6.4%).
- In Bogotá, CNG powered vehicles accounted for 3.2% of the total emissions from the vehicle fleet sample – almost exclusively from smaller vehicles (<3.5t GVW).
3. Key results

Share of baseline CO$_2$e emissions by vehicle type (sample)

- Vehicles above of 20t of GVW produce most of GHG emissions in Bogota (74%), Rosario (72%), and Cordoba (64%). In Bogota, 27% of these vehicles has more than 20 years, in Rosario 88%, and Cordoba 8%, but in this last city they cover more VKTs than the other types (average of 119,533 km/year).

- In small cities vehicles between 3,5t-20t GVW produce most of GHG emissions, such as Santa Fe (70%) and Manizales (90%)

- AMVA (51%) of vehicles below 3,5t GVW produce most of GHG emissions. These vehicles carry out the major intracity daily trips, 88% (219,383)

Source: ICLEI-Despacio
3. Key results

Forecasts for urban freight CO\textsubscript{2}e emissions in the BAU scenario

Two cities shows a GHG emissions forecast that brings attention if today no action is taken:

- **Bogota**, in 10 years, will increase their GHG emissions by 38% (243,007 CO\textsubscript{2}e tons), but in 2050 it will be 150% (438,897 CO\textsubscript{2}e t).

- In 2030, **Cordoba** will increase their GHG in 43% (67,747 CO\textsubscript{2}e tons), but in 2050 could be 174% (129,687 CO\textsubscript{2}e tons).

EcoLogistics Self-Monitoring Tool uses the estimated global freight transport demand annual growth rate of 3% (ITF 2019).

Off-Hour Deliveries (OHD) and eco-driving can potentially deviate the BAU with more efficient operational practices to **reduce emissions in a cost-efficient way**.
4. Learnings to improve decision and policy-making

Setting the policy agenda: EcoLogistics baseline helps to assess freight transport performance and identifies priorities and future directions in this sector.

Allocate more and better resources for GHG reduction:
- Vehicle performance improvement
- Cost reduction
- Noise pollution
- Traffic congestion
- Changing fuel or fuel compound percentages

All the stakeholders at the “same table”: ensure a collaborative process to improve the freight system.

Source: https://integrandoequpos.com/2019/04/01/toma-de-decisiones/
Thanks!

Camilo Urbano
urbanocamilo@despacio.org
@camilourbano